Differentiating Human Embryonic Stem Cells Express a Unique Housekeeping Gene Signature

Author:

Synnergren Jane12,Giesler Theresa L.3,Adak Sudeshna4,Tandon Reeti4,Noaksson Karin5,Lindahl Anders1,Nilsson Patric6,Nelson Deirdre7,Olsson Björn2,Englund Mikael C.O.5,Abbot Stewart7,Sartipy Peter5

Affiliation:

1. Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Göteborg, Sweden

2. School of Humanities and Informatics, University of Skövde, Skövde, Sweden

3. GE Healthcare, Piscataway, New Jersey, USA

4. GE John F. Welch Technology Centre Export Promotion Industrial Park, Bangalore, India

5. Cellartis AB, Göteborg, Sweden

6. School of Life Sciences, University of Skövde, Skövde, Sweden

7. GE Global Research Center, Niskayuna, New York, USA

Abstract

Abstract Housekeeping genes (HKGs) are involved in basic functions needed for the sustenance of the cell and are assumed to be constitutively expressed at a constant level. Based on these features, HKGs are frequently used for normalization of gene expression data. In the present study, we used the CodeLink Gene Expression Bioarray system to interrogate changes in gene expression occurring during differentiation of human ESCs (hESCs). Notably, in the three hESC lines used for the study, we observed that the RNA levels of 56 frequently used HKGs varied to a degree that rendered them inappropriate as reference genes. Therefore, we defined a novel set of HKGs specifically for hESCs. Here we present a comprehensive list of 292 genes that are stably expressed (coefficient of variation <20%) in differentiating hESCs. These genes were further grouped into high-, medium-, and low-expressed genes. The expression patterns of these novel HKGs show very little overlap with results obtained from somatic cells and tissues. We further explored the stability of this novel set of HKGs in independent, publicly available gene expression data from hESCs and observed substantial similarities with our results. Gene expression was confirmed by real-time quantitative polymerase chain reaction analysis. Taken together, these results suggest that differentiating hESCs have a unique HKG signature and underscore the necessity to validate the expression profiles of putative HKGs. In addition, this novel set of HKGs can preferentially be used as controls in gene expression analyses of differentiating hESCs.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3