Improved Human Embryonic Stem Cell Embryoid Body Homogeneity and Cardiomyocyte Differentiation from a Novel V-96 Plate Aggregation System Highlights Interline Variability

Author:

Burridge Paul W.12,Anderson David2,Priddle Helen13,Barbadillo Muñoz Maria D.12,Chamberlain Sarah3,Allegrucci Cinzia12,Young Lorraine E.12,Denning Chris12

Affiliation:

1. Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Human Development, Nottingham University Research, Queen's Medical Centre, Nottingham, United Kingdom

2. Institute of Genetics, Nottingham University Research, Queen's Medical Centre, Nottingham, United Kingdom

3. Treatment Unit, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom

Abstract

Abstract Although all human ESC (hESC) lines have similar morphology, express key pluripotency markers, and can differentiate toward primitive germ layers in vitro, the lineage-specific developmental potential may vary between individual lines. In the current study, four hESC lines were cultured in the same feeder-free conditions to provide a standardized platform for interline analysis. A high-throughput, forced-aggregation system involving centrifugation of defined numbers of hESCs in V-96 plates (V-96FA) was developed to examine formation, growth, and subsequent cardiomyocyte differentiation from >22,000 EBs. Homogeneity of EBs formed by V-96FA in mouse embryo fibroblast-conditioned medium was significantly improved compared with formation in mass culture (p < .02; Levene's test). V-96FA EB formation was successful in all four lines, although significant differences in EB growth were observed during the first 6 days of differentiation (p = .044 to .001; one-way analysis of variance [ANOVA]). Cardiomyocyte differentiation potential also varied; 9.5% ± 0.9%, 6.6% ± 2.4%, 5.2% ± 3.1%, and 1.6% ± 1.0% beating EBs were identified for HUES-7, NOTT2, NOTT1, and BG01, respectively (p = .008; one-way ANOVA). Formation of HUES-7 V-96FA EBs in defined medium containing activin A and basic fibroblast growth factor resulted in 23.6% ± 3.6% beating EBs, representing a 13.1-fold increase relative to mass culture (1.8% ± 0.7%), consistent with an observed 14.8-fold increase in MYH6 (αMHC) expression by real-time polymerase chain reaction. In contrast, no beating areas were derived from NOTT1-EBs and BG01-EBs formed in defined medium. Thus, the V-96FA system highlighted interline variability in EB growth and cardiomyocyte differentiation but, under the test conditions described, identified HUES-7 as a line that can respond to cardiomyogenic stimulation. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3