A Tissue Engineering Approach to Progenitor Cell Delivery Results in Significant Cell Engraftment and Improved Myocardial Remodeling

Author:

Simpson David12,Liu Hong32,Fan Tai-Hwang Michael32,Nerem Robert1,Dudley Samuel C.32

Affiliation:

1. Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

2. Division of Cardiology, Emory University, Atlanta, Georgia, USA

3. Division of Cardiology, Atlanta Veterans Affairs Medical Center, Decatur, Georgia, USA

Abstract

Abstract Cell replacement therapy has become an attractive solution for myocardial repair. Typical cell delivery techniques, however, suffer from poor cell engraftment and inhomogeneous cell distributions. Therefore, we assessed the hypothesis that an epicardially applied, tissue-engineered cardiac patch containing progenitor cells would result in enhanced exogenous cell engraftment. Human mesenchymal stem cells (hMSCs) were embedded into a rat tail type I collagen matrix to form the cardiac patch. Myocardial infarction was induced by left anterior descending coronary artery ligation in immunocompetent male cesarean-derived fischer rats, and patches with or without cells were secured to hearts with fibrin sealant. After patch formation, hMSCs retained a viability of >90% over 5 days in culture. In addition, >75% of hMSCs maintained a high degree of potency prior to patch implantation. After 4 days in culture, patches were applied to the epicardial surface of the infarct area and resulted in 23% ± 4% engraftment of hMSCs at 1 week (n = 6). Patch application resulted in a reduction in left ventricle interior diameter at systole, increased anterior wall thickness, and a 30% increase in fractional shortening. Despite this improvement in myocardial remodeling, hMSCs were not detectable at 4 weeks after patch application, implying that improvement did not require long-term cell engraftment. Patches devoid of progenitor cells showed no improvement in remodeling. In conclusion, pluripotent hMSCs can be efficiently delivered to a site of myocardial injury using an epicardial cardiac patch, and such delivery results in improved myocardial remodeling after infarction. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 174 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3