Molecular and Secretory Profiles of Human Mesenchymal Stromal Cells and Their Abilities to Maintain Primitive Hematopoietic Progenitors

Author:

Wagner Wolfgang12,Roderburg Christoph2,Wein Frederik2,Diehlmann Anke2,Frankhauser Maria3,Schubert Ralf4,Eckstein Volker2,Ho Anthony D.2

Affiliation:

1. Department of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany

2. Department of Medicine V, University of Heidelberg, Heidelberg, Germany

3. Cytonet GmbH, Heidelberg, Germany

4. Department of Pediatrics, Johann-Wolfgang Goethe-University, Frankfurt, Frankfurt am Main, Germany

Abstract

Abstract Mesenchymal stromal cells (MSC) provide a supportive cellular microenvironment and are able to maintain the self-renewal capacity of hematopoietic progenitor cells (HPC). Isolation procedures for MSC vary extensively, and this may influence their biologic properties. In this study, we have compared human MSC isolated from bone marrow (BM) using two culture conditions, from cord blood (CB), and from adipose tissue (AT). The ability to maintain long-term culture-initiating cell frequency and a primitive CD34+CD38− immunophenotype was significantly higher for MSC derived from BM and CB compared with those from AT. These results were in line with a significantly higher adhesion of HPC to MSC from BM and CB versus MSC from AT. We have compared the cytokine production of MSC by cytokine antibody arrays, enzyme-linked immunosorbent assay, and a cytometric bead array. There were reproducible differences in the chemokine secretion profiles of various MSC preparations, but there was no clear concordance with differences in their potential to maintain primitive function of HPC. Global gene expression profiles of MSC preparations were analyzed and showed that adhesion proteins including cadherin-11, N-cadherin, vascular cell adhesion molecule 1, neural cell adhesion molecule 1, and integrins were highly expressed in MSC preparations derived from BM and CB. Thus, MSC from BM and CB are superior to MSC from AT for maintenance of primitive HPC. The latter property is associated with specific molecular profiles indicating the significance of cell-cell junctions but not with secretory profiles. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3