Identification of a Novel Putative Gastrointestinal Stem Cell and Adenoma Stem Cell Marker, Doublecortin and CaM Kinase-Like-1, Following Radiation Injury and in Adenomatous Polyposis Coli/Multiple Intestinal Neoplasia Mice

Author:

May Randal1,Riehl Terrence E.2,Hunt Clayton3,Sureban Sripathi M.1,Anant Shrikant14,Houchen Courtney W.1

Affiliation:

1. Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA

2. Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA

3. Department of Radiation Oncology, Radiation and Cancer Biology Division, Washington University School of Medicine, St. Louis, Missouri, USA

4. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA

Abstract

Abstract In the gut, tumorigenesis arises from intestinal or colonic crypt stem cells. Currently, no definitive markers exist that reliably identify gut stem cells. Here, we used the putative stem cell marker doublecortin and CaM kinase-like-1 (DCAMKL-1) to examine radiation-induced stem cell apoptosis and adenomatous polyposis coli (APC)/multiple intestinal neoplasia (min) mice to determine the effects of APC mutation on DCAMKL-1 expression. Immunoreactive DCAMKL-1 staining was demonstrated in the intestinal stem cell zone. Furthermore, we observed apoptosis of the cells negative for DCAMKL-1 at 6 hours. We found DNA damage in all the cells in the crypt region, including the DCAMKL-1-positive cells. We also observed stem cell apoptosis and mitotic DCAMKL-1-expressing cells 24 hours after irradiation. Moreover, in APC/min mice, DCAMKL-1-expressing cells were negative for proliferating cell nuclear antigen and nuclear β-catenin in normal-appearing intestine. However, β-catenin was nuclear in DCAMKL-1-positive cells in adenomas. Thus, nuclear translocation of β-catenin distinguishes normal and adenoma stem cells. Targeting DCAMKL-1 may represent a strategy for developing novel chemotherapeutic agents. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3