Novel Extracellular Matrix Structures in the Neural Stem Cell Niche Capture the Neurogenic Factor Fibroblast Growth Factor 2 from the Extracellular Milieu

Author:

Kerever Aurelien1,Schnack Jason1,Vellinga Dirk1,Ichikawa Naoki2,Moon Chris1,Arikawa-Hirasawa Eri2,Efird Jimmy T.1,Mercier Frederic1

Affiliation:

1. Department of Tropical Medicine and Infectious Diseases, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA

2. Research Institute for Diseases of Old Age, Jutendo University School of Medicine, Tokyo, Japan

Abstract

Abstract The novel extracellular matrix structures called fractones are found in the lateral ventricle walls, the principal adult brain stem cell niche. By electron microscopy, fractones were shown to contact neural stem and progenitor cells (NSPC), suggesting a role in neurogenesis. Here, we investigated spatial relationships between proliferating NSPC and fractones and identified basic components and the first function of fractones. Using bromodeoxyuridine (BrdU) for birth-dating cells in the adult mouse lateral ventricle wall, we found most mitotic cells next to fractones, although some cells emerged next to capillaries. Like capillary basement membranes, fractones were immunoreactive for laminin β1 and γ1, collagen IV, nidogen, and perlecan, but not laminin-α1, in the adult rat, mouse, and human. Intriguingly, N-sulfate heparan sulfate proteoglycan (HSPG) immunoreactivity was restricted to fractone subpopulations and infrequent subependymal capillaries. Double immunolabel for BrdU and N-sulfate HSPG revealed preferential mitosis next to N-sulfate HSPG immunoreactive fractones. To determine whether N sulfate HSPG immunoreactivity within fractones reflects a potential for binding neurogenic growth factors, we identified biotinylated fibroblast growth factor 2 (FGF-2) binding sites in situ on frozen sections, and in vivo after intracerebroventricular injection of biotinylated FGF-2 in the adult rat or mouse. Both binding assays revealed biotinylated FGF-2 on fractone subpopulations and on infrequent subependymal capillaries. The binding of biotinylated FGF-2 was specific and dependent upon HSPG, as demonstrated in vitro and in vivo by inhibition with heparatinase and by the concomitant disappearance of N-sulfate HSPG immunoreactivity. These results strongly suggest that fractones promote growth factor activity in the neural stem cell niche. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 239 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3