High-Throughput Screening of Gene Function in Stem Cells Using Clonal Microarrays

Author:

Ashton Randolph S.1,Peltier Joseph2,Fasano Christopher A.3,O'Neill Analeah2,Leonard Joshua2,Temple Sally3,Schaffer David V.2,Kane Ravi S.1

Affiliation:

1. The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA

2. Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA

3. Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York, USA

Abstract

Abstract We describe a microarray-based approach for the high-throughput screening of gene function in stem cells and demonstrate the potential of this method by growing and isolating clonal populations of both adult and embryonic neural stem cells. Clonal microarrays are constructed by seeding a population of cells at clonal density on micropatterned surfaces generated using soft lithographic microfabrication techniques. Clones of interest can be isolated after assaying in parallel for various cellular processes and functions, including proliferation, signal transduction, and differentiation. We demonstrate the compatibility of the technique with both gain- and loss-of-function studies using cell populations infected with cDNA libraries or DNA constructs that induce RNA interference. The infection of cells with a library prior to seeding and the compact but isolated growth of clonal cell populations will facilitate the screening of large libraries in a wide variety of mammalian cells, including those that are difficult to transfect by conventional methods. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3