Affiliation:
1. Academic Rheumatology, Department of Clinical Science at North Bristol, University of Bristol, United Kingdom
Abstract
Abstract
Conventional methods for regulating the differentiation of stem cells are largely based on the use of biological agents such as growth factors. We hypothesize that stem cell differentiation could be driven by specific synthetic molecules. If true, this would offer the possibility of screening chemical libraries to develop pharmacological agents with improved efficacy. To test our hypothesis, we have determined which, if any, of the nuclear receptor superfamily might be involved in chondrogenesis. We used fluorescence-activated cell sorting, as well as quantitative polymerase chain reaction, to study expression of a range of nuclear receptors in the undifferentiated mesenchymal population and after growth factor-driven differentiation of these cells to chondrocytes. In this way, we identified retinoic acid receptor β (RARβ) as a potential pharmacological target. A low molecular weight synthetic inhibitor of the RARα and RARβ receptors was able to induce chondrogenic differentiation of mesenchymal stem cells derived from osteoarthritis patients, in the absence of serum and growth factors. Furthermore, the pathway is independent of SOX9 upregulation and does not lead to hypertrophy. When mesenchymal cells were seeded on to polyglycolic acid scaffolds and cultured with LE135, there was a dose-dependent formation of cartilage, demonstrated both histologically and by biochemical analysis of the collagen component of the extracellular matrix. These results demonstrate the feasibility of a pharmacological approach to the regulation of stem cell function.
Disclosure of potential conflicts of interest is found at the end of this article.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献