Pharmacological Regulation of Adult Stem Cells: Chondrogenesis Can Be Induced Using a Synthetic Inhibitor of the Retinoic Acid Receptor

Author:

Kafienah Wael1,Mistry Sanjay1,Perry Mark J.1,Politopoulou Galatia1,Hollander Anthony P.1

Affiliation:

1. Academic Rheumatology, Department of Clinical Science at North Bristol, University of Bristol, United Kingdom

Abstract

Abstract Conventional methods for regulating the differentiation of stem cells are largely based on the use of biological agents such as growth factors. We hypothesize that stem cell differentiation could be driven by specific synthetic molecules. If true, this would offer the possibility of screening chemical libraries to develop pharmacological agents with improved efficacy. To test our hypothesis, we have determined which, if any, of the nuclear receptor superfamily might be involved in chondrogenesis. We used fluorescence-activated cell sorting, as well as quantitative polymerase chain reaction, to study expression of a range of nuclear receptors in the undifferentiated mesenchymal population and after growth factor-driven differentiation of these cells to chondrocytes. In this way, we identified retinoic acid receptor β (RARβ) as a potential pharmacological target. A low molecular weight synthetic inhibitor of the RARα and RARβ receptors was able to induce chondrogenic differentiation of mesenchymal stem cells derived from osteoarthritis patients, in the absence of serum and growth factors. Furthermore, the pathway is independent of SOX9 upregulation and does not lead to hypertrophy. When mesenchymal cells were seeded on to polyglycolic acid scaffolds and cultured with LE135, there was a dose-dependent formation of cartilage, demonstrated both histologically and by biochemical analysis of the collagen component of the extracellular matrix. These results demonstrate the feasibility of a pharmacological approach to the regulation of stem cell function. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3