Reduced Mcm2 Expression Results in Severe Stem/Progenitor Cell Deficiency and Cancer

Author:

Pruitt Steven C.1,Bailey Kimberly J.1,Freeland Amy1

Affiliation:

1. Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA

Abstract

Abstract Mcm2 is a component of the DNA replication licensing complex that marks DNA replication origins during G1 of the cell cycle for use in the subsequent S-phase. It is expressed in stem/progenitor cells in a variety of regenerative tissues in mammals. Here, we have used the Mcm2 gene to develop a transgenic mouse in which somatic stem/progenitor cells can be genetically modified in the adult. In these mice, a tamoxifen-inducible form of Cre recombinase is integrated 3′ to the Mcm2 coding sequence and expressed via an internal ribosome entry site (IRES). Heterozygous Mcm2IRES-CreERT2/wild-type (wt) mice are phenotypically indistinguishable from wild-type at least through 1 year of age. In bigenic Mcm2IRES-CreERT2/wt; Z/EG reporter mice, tamoxifen-dependent enhanced green fluorescence protein expression is inducible in a wide variety of somatic stem cells and their progeny. However, in Mcm2IRES-CreERT2/IRES-CreERT2 homozygous embryos or mouse embryonic fibroblasts, Mcm2 is reduced to approximately one-third of wild-type levels. Despite the fact that these mice develop normally and are asymptomatic as young adults, life span is greatly reduced, with most surviving to only ∼10–12 weeks of age. They demonstrate severe deficiencies in the proliferative cell compartments of a variety of tissues, including the subventricular zone of the brain, muscle, and intestinal crypts. However, the immediate cause of death in most of these animals is cancer, where the majority develop lymphomas. These studies directly demonstrate that deficiencies in the function of the core DNA replication machinery that are compatible with development and survival nonetheless result in a chronic phenotype leading to stem cell deficiency in multiple tissues and cancer. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3