Coordinated Changes of Mitochondrial Biogenesis and Antioxidant Enzymes During Osteogenic Differentiation of Human Mesenchymal Stem Cells

Author:

Chen Chien-Tsun1,Shih Yu-Ru V.2,Kuo Tom K.2,Lee Oscar K.34,Wei Yau-Huei1

Affiliation:

1. Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan

2. Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan

3. Clinical Medicine, National Yang-Ming University, Taipei, Taiwan

4. Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan

Abstract

Abstract The multidifferentiation ability of mesenchymal stem cells holds great promise for cell therapy. Numerous studies have focused on the establishment of differentiation protocols, whereas little attention has been paid to the metabolic changes during the differentiation process. Mitochondria, the powerhouse of mammalian cells, vary in their number and function in different cell types with different energy demands, but how these variations are associated with cell differentiation remains elusive. In this study, we investigated the changes of mitochondrial biogenesis and bioenergetic function using human mesenchymal stem cells (hMSCs) because of their well-defined differentiation potentials. Upon osteogenic induction, the copy number of mitochondrial DNA, protein subunits of the respiratory enzymes, oxygen consumption rate, and intracellular ATP content were increased, indicating the upregulation of aerobic mitochondrial metabolism. On the other hand, undifferentiated hMSCs showed higher levels of glycolytic enzymes and lactate production rate, suggesting that hMSCs rely more on glycolysis for energy supply in comparison with hMSC-differentiated osteoblasts. In addition, we observed a dramatic decrease of intracellular reactive oxygen species (ROS) as a consequence of upregulation of two antioxidant enzymes, manganese-dependent superoxide dismutase and catalase. Finally, we found that exogenous H2O2 and mitochondrial inhibitors could retard the osteogenic differentiation. These findings suggested an energy production transition from glycolysis to oxidative phosphorylation in hMSCs upon osteogenic induction. Meanwhile, antioxidant enzymes were concurrently upregulated to prevent the accumulation of intracellular ROS. Together, our findings suggest that coordinated regulation of mitochondrial biogenesis and antioxidant enzymes occurs synergistically during osteogenic differentiation of hMSCs. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3