Fibrochondrogenesis in Two Embryonic Stem Cell Lines: Effects of Differentiation Timelines

Author:

Hoben Gwendolyn M.12,Koay Eugene J.12,Athanasiou Kyriacos A.2

Affiliation:

1. Baylor College of Medicine, Houston, Texas, USA

2. Department of Bioengineering, Rice University, Houston, Texas, USA

Abstract

Abstract Human embryonic stem cells (hESCs) are an exciting cell source for fibrocartilage engineering. In this study, the effects of differentiation time and cell line, H9 versus BG01V, were examined. Embryoid bodies (EBs) were fibrochondrogenically differentiated for 1, 3, or 6 weeks and then used to engineer tissue constructs that were grown for an additional 4 weeks. Construct matrix was fibrocartilaginous, containing glycosaminoglycans (GAGs) and collagens I, II, and VI. A differentiation time of 3 or 6 weeks produced homogeneous constructs, with matrix composition varying greatly with cell line and differentiation time: from 2.6 to 17.4 μg of GAG per 106 cells and from 22.3 to 238.4 μg of collagen per 106 cells. Differentiation for 1 week resulted in small constructs with poor structural integrity that could not be mechanically tested. The compressive stiffness of the constructs obtained from EBs differentiated for 3 or 6 weeks did not vary significantly as a function of either differentiation time or cell line. In contrast, the tensile properties were markedly greater with the H9 cell line, 1,562–1,940 versus 32–80 kPa in the BG01V constructs. These results demonstrate the dramatic effects of hESC line and differentiation time on the biochemical and functional properties of tissue-engineered constructs and show progress in fibrocartilage tissue engineering with an exciting new cell source. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3