Functional Sarcoplasmic Reticulum for Calcium Handling of Human Embryonic Stem Cell-Derived Cardiomyocytes: Insights for Driven Maturation

Author:

Liu Jing12,Fu Ji Dong12,Siu Chung Wah12,Li Ronald A.312

Affiliation:

1. Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, USA

2. Stem Cell Program, University of California Davis, Davis, California, USA

3. Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North America, Sacramento, California, USA

Abstract

Abstract Cardiomyocytes (CMs) are nonregenerative. Self-renewable pluripotent human embryonic stem cells (hESCs) can differentiate into CMs for cell-based therapies. In adult CMs, Ca2+-induced Ca2+ release from the sarcoplasmic reticulum (SR) via the ryanodine receptor (RyR) is key in excitation-contraction coupling. Therefore, proper Ca2+ handling properties of hESC-derived CMs are required for their successful functional integration with the recipient heart. Here, we performed a comprehensive analysis of CMs differentiated from the H1 (H1-CMs) and HES2 (HES2-CMs) hESC lines and human fetal (F) and adult (A) left ventricular (LV) CMs. Upon electrical stimulation, all of H1-, HES2-, and FLV-CMs generated similar Ca2+ transients. Caffeine induced Ca2+ release in 65% of FLV-CMs and ∼38% of H1- and HES2-CMs. Ryanodine significantly reduced the electrically evoked Ca2+ transient amplitudes of caffeine-responsive but not -insensitive HES2- and H1-CMs and slowed their upstroke; thapsigargin, which inhibits the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump, reduced the amplitude of only caffeine-responsive HES2- and H1-CMs and slowed the decay. SERCA2a expression was highest in ALV-CMs but comparable among H1-, HES2-, and FLV-CMs. The Na+-Ca2+ exchanger was substantially expressed in both HES2- and H1-CMs relative to FLV- and ALV-CMs. RyR was expressed in HES2-, H1-, and FLV-CMs, but the organized pattern for ALV-CMs was not observed. The regulatory proteins junctin, triadin, and calsequestrin were expressed in ALV-CMs but not HES2- and H1-CMs. We conclude that functional SRs are indeed expressed in hESC-CMs, albeit immaturely. Our results may lead to driven maturation of Ca2+ handling properties of hESC-CMs for enhanced contractile functions. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3