Chondrogenic Potential of Human Adult Mesenchymal Stem Cells Is Independent of Age or Osteoarthritis Etiology

Author:

Scharstuhl Alwin12,Schewe Bernhard3,Benz Karin2,Gaissmaier Christoph3,Bühring Hans-Jörg4,Stoop Reinout2

Affiliation:

1. TETEC AG, Reutlingen, Germany

2. NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany

3. Hospital for Workers Compensation Tübingen, Tübingen, Germany

4. University Clinic of Tübingen, Department of Internal Medicine, Medical Research Center, Tübingen, Germany

Abstract

Abstract Osteoarthritis (OA) is a multifactorial disease strongly correlated with history of joint trauma, joint dysplasia, and advanced age. Mesenchymal stem cells (MSCs) are promising cells for biological cartilage regeneration. Conflicting data have been published concerning the availability of MSCs from the iliac crest, depending on age and overall physical fitness. Here, we analyzed whether the availability and chondrogenic differentiation capacity of MSCs isolated from the femoral shaft as an alternative source is age- or OA etiology-dependent. MSCs were isolated from the bone marrow (BM) of 98 patients, categorized into three OA-etiology groups (age-related, joint trauma, joint dysplasia) at the time of total hip replacement. All BM samples were characterized for cell yield, proliferation capacity, and phenotype. Chondrogenic differentiation was studied using micromass culture and analyzed by histology, immunohistochemistry, and quantitative reverse transcriptase-polymerase chain reaction. Significant volumes of viable BM (up to 25 ml) could be harvested from the femoral shaft without observing donor-site morbidity, typically containing >107 mononuclear cells per milliliter. No correlation of age or OA etiology with the number of mononuclear cells in BM, MSC yield, or cell size was found. Proliferative capacity and cellular spectrum of the harvested cells were independent of age and cause of OA. From all tested donors, MSCs could be differentiated into the chondrogenic lineage. We conclude that, irrespective of age and OA etiology, sufficient numbers of MSCs can be isolated and that these cells possess an adequate chondrogenic differentiation potential. Therefore, a therapeutic application of MSCs for cartilage regeneration of OA lesions seems feasible. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3