In Vitro Functional Gut-Like Organ Formation from Mouse Embryonic Stem Cells

Author:

Yamada Takatsugu12,Yoshikawa Masahide1,Takaki Miyako3,Torihashi Shigeko4,Kato Yoko5,Nakajima Yoshiyuki2,Ishizaka Shigeaki1,Tsunoda Yukio5

Affiliation:

1. Division of Developmental Biology, Department of Parasitology, Nara Medical University, Nara, Japan

2. First Department of Surgery, Nara Medical University, Nara, Japan

3. Department of Physiology II, Nara Medical University, Nara, Japan

4. Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan

5. Laboratory of Animal Reproduction, College of Agriculture, Kinki University, Nara, Japan

Abstract

Abstract Background and Aims. Embryonic stem (ES) cells have a pluripotent ability to differentiate into a variety of cell lineages in vitro. We have recently found that ES cells can give rise to a functional gut-like unit, which forms a three-dimensional dome-like structure with lumen and exhibits mechanical activity, such as spontaneous contraction and peristalsis. The aim of the present study was to investigate the electrophysiological and morphological properties of ES cell-derived contracting clusters. Methods. Electrical activity was examined by an extracellular recording. Morphology and cellular components were investigated by immunohistochemistry and electron microscopy. Results. Clusters with rhythmic contractions displayed electrical slow waves at a regular rhythm, and clusters with highly coordinated peristalsis showed regular slow waves and spontaneous spike action potentials. Immunoreactivity for c-Kit, a marker of interstitial cells of Cajal (ICC), was observed in dense network structures. Neuronal marker PGP9.5 immunoreactivity was observed only in clusters with peristalsis. The topographical structure of the wall was organized by an inner epithelial layer and outer smooth muscle layer. The smooth muscle layer was provided with an ICC network and innervated with enteric neurons. Conclusions. ES cells can differentiate into a functional gut-like organ in vitro that exhibits physiological and morphological properties characteristic of the gastrointestinal (GI) tract. This ES cell-derived gut provides a powerful tool for studying GI motility and gut development in vitro, and has potential for elucidating and treating a variety of motility disorders.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3