Affiliation:
1. Institute of Immunology, Biology Department, National University of Ireland Maynooth, Maynooth, Ireland
2. Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
Abstract
Abstract
While investigating the differentiation potential of bone marrow-derived cells, we previously demonstrated upregulated expression of the lung-related surfactant protein B (SP-B) gene in hematopoietic progenitor cells (HPCs) when they were cocultured with macerated lung tissue. During coculture, HPCs differentiated toward a dendritic-like myeloid cell phenotype (hematopoietic progenitor cell-derived dendritic-like cells [HPC-DCs]). However, immature dendritic cells (iDCs) cocultured under identical conditions did not express SP-B mRNA before or after coculture. We have now further examined the regulation of SP-B expression in HPC-DCs and iDCs. Of the transcription factors involved in SP-B gene expression, neither cell type expressed TTF-1, HNF3α, or HNF3β, but both cell types expressed Sp1 and Sp3. Sp1 binding to the SP-B promoter was investigated in these cells. Three novel Sp1 binding motifs were identified in the mouse SP-B promoter. Using chromatin immunoprecipitation, it was demonstrated that Sp1 was bound to all three sites in HPC-DCs after coculture with lung tissue, but not in iDCs. We hypothesized that although genes from multiple lineages may be active in HPCs, gene silencing events, such as methylation, may subsequently occur to suppress expression of these genes in more mature myeloid cells, such as iDCs. Treatment with the demethylating agent 5-azacytidine resulted in expression of the SP-B gene in iDCs. These data indicate that tissue-specific transcription factors are not required to express the lung-related gene SP-B in hematopoietic progenitor cells. Furthermore, silencing events, such as methylation, may occur to suppress lung-related gene expression as progenitor cells become committed toward more mature hematopoietic cell phenotypes.
Funder
Science Foundation Ireland
Irish Research Council for Science, Engineering and Technology
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献