Autocrine Regulation of Interferon γ in Mesenchymal Stem Cells Plays a Role in Early Osteoblastogenesis

Author:

Duque Gustavo123,Huang Dao Chao1,Macoritto Michael1,Rivas Daniel2,Yang Xian Fang1,Ste-Marie Louis Georges4,Kremer Richard1

Affiliation:

1. Department of Medicine and Center for Bone and Periodontal Research, McGill University and McGill University Health Center, Montréal, Quebec, Canada

2. Lady Davis Institute for Medical Research, McGill University, Montréal, Quebec, Canada

3. Aging Bone Research Program, Nepean Clinical School, University of Sydney, Penrith, New South Wales, Australia

4. Centre de Recherche du CHUM, Hôpital Saint-Luc, Université de Montréal, Montréal, Quebec, Canada

Abstract

Abstract Interferon (IFN)γ is a strong inhibitor of osteoclast differentiation and activity. However, its role in osteoblastogenesis has not been carefully examined. Using microarray expression analysis, we found that several IFNγ-inducible genes were upregulated during early phases of osteoblast differentiation of human mesenchymal stem cells (hMSCs). We therefore hypothesized that IFNγ may play a role in this process. We first observed a strong and transient increase in IFNγ production following hMSC induction to differentiate into osteoblasts. We next blocked this endogenous production using a knockdown approach with small interfering RNA and observed a strong inhibition of hMSC differentiation into osteoblasts with a concomitant decrease in Runx2, a factor indispensable for osteoblast development. Additionally, exogenous addition of IFNγ accelerated hMSC differentiation into osteoblasts in a dose-dependent manner and induced higher levels of Runx2 expression during the early phase of differentiation. We next examined IFNγ signaling in vivo in IFNγ receptor 1 knockout (IFNγR1−/−) mice. Compared with their wild-type littermates, IFNγR1−/− mice exhibited a reduction in bone mineral density. As in the in vitro experiments, MSCs obtained from IFNγR1−/− mice showed a lower capacity to differentiate into osteoblasts. In summary, we demonstrate that the presence of IFNγ plays an important role during the commitment of MSCs into the osteoblastic lineage both in vitro and in vivo, and that this process can be accelerated by exogenous addition of IFNγ. These data therefore support a new role for IFNγ as an autocrine regulator of hMSC differentiation and as a potential new target of bone-forming cells in vivo.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3