Quiescent Human Hematopoietic Stem Cells in the Bone Marrow Niches Organize the Hierarchical Structure of Hematopoiesis

Author:

Yahata Takashi123,Muguruma Yukari1,Yumino Shizu1,Sheng Yin1,Uno Tomoko1,Matsuzawa Hideyuki1,Ito Mamoru4,Kato Shunichi13,Hotta Tomomitsu12,Ando Kiyoshi12

Affiliation:

1. Division of Hematopoiesis, Research Center for Regenerative Medicine; Tokai University School of Medicine, Kanagawa, Japan

2. Department of Hematology; Tokai University School of Medicine, Kanagawa, Japan

3. Department of Cell Transplantation and Regenerative Medicine; Tokai University School of Medicine, Kanagawa, Japan

4. Central Institute for Experimental Animals, Kawasaki, Japan

Abstract

Abstract Hematopoiesis is a dynamic and strictly regulated process orchestrated by self-renewing hematopoietic stem cells (HSCs) and the supporting microenvironment. However, the exact mechanisms by which individual human HSCs sustain hematopoietic homeostasis remain to be clarified. To understand how the long-term repopulating cell (LTRC) activity of individual human HSCs and the hematopoietic hierarchy are maintained in the bone marrow (BM) microenvironment, we traced the repopulating dynamics of individual human HSC clones using viral integration site analysis. Our study presents several lines of evidence regarding the in vivo dynamics of human hematopoiesis. First, human LTRCs existed in a rare population of CD34+CD38− cells that localized to the stem cell niches and maintained their stem cell activities while being in a quiescent state. Second, clonally distinct LTRCs controlled hematopoietic homeostasis and created a stem cell pool hierarchy by asymmetric self-renewal division that produced lineage-restricted short-term repopulating cells and long-lasting LTRCs. Third, we demonstrated that quiescent LTRC clones expanded remarkably to reconstitute the hematopoiesis of the secondary recipient. Finally, we further demonstrated that human mesenchymal stem cells differentiated into key components of the niche and maintained LTRC activity by closely interacting with quiescent human LTRCs, resulting in more LTRCs. Taken together, this study provides a novel insight into repopulation dynamics, turnover, hierarchical structure, and the cell cycle status of human HSCs in the recipient BM microenvironment. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3