Reprogrammed Mouse Fibroblasts Differentiate into Cells of the Cardiovascular and Hematopoietic Lineages

Author:

Schenke-Layland Katja1,Rhodes Katrin E.2,Angelis Ekaterini1,Butylkova Yekaterina1,Heydarkhan-Hagvall Sepideh3,Gekas Christos2,Zhang Rui1,Goldhaber Joshua I.1,Mikkola Hanna K.2,Plath Kathrin45,MacLellan W. Robb1

Affiliation:

1. Department of Medicine and Physiology, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, California, USA

2. Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, USA

3. Department of Surgery, Regenerative Bioengineering and Repair Laboratory, University of California Los Angeles, Los Angeles, California, USA

4. Molecular Biology Institute, Johnson Comprehensive Cancer Center and Institute for Stem Cell Biology and Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA

5. Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, USA

Abstract

Abstract Forced expression of the four transcription factors Oct4, Sox2, c-Myc, and Klf4 is sufficient to confer a pluripotent state upon the murine fibroblast genome, generating induced pluripotent stem (iPS) cells. Although the differentiation potential of these cells is thought to be equivalent to that of embryonic stem (ES) cells, it has not been rigorously determined. In this study, we sought to identify the capacity of iPS cells to differentiate into Flk1-positive progenitors and their mesodermal progeny, including cells of the cardiovascular and hematopoietic lineages. Immunostaining of tissues from iPS cell-derived chimeric mice demonstrated that iPS cells could contribute in vivo to cardiomyocytes, smooth muscle cells, endothelial cells, and hematopoietic cells. To compare the in vitro differentiation potential of murine ES and iPS cells, we either induced embryoid body (EB) formation of each cell type or cultured the cells on collagen type IV (ColIV), an extracellular matrix protein that had been reported to direct murine ES cell differentiation to mesodermal lineages. EB formation and exposure to ColIV both induced iPS cell differentiation into cells that expressed cardiovascular and hematopoietic markers. To determine whether ColIV-differentiated iPS cells contained a progenitor cell with cardiovascular and hematopoietic differentiation potential, Flk1-positive cells were isolated by magnetic cell sorting and exposed to specific differentiation conditions, which induced differentiation into functional cardiomyocytes, smooth muscle cells, endothelial cells, and hematopoietic cells. Our data demonstrate that murine iPS cells, like ES cells, can differentiate into cells of the cardiovascular and hematopoietic lineages and therefore may represent a valuable cell source for applications in regenerative medicine. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 206 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3