Conceptual and Practical Implications of Breast Tissue Geometry: Toward a More Effective, Less Toxic Therapy

Author:

Norton Larry1

Affiliation:

1. Memorial Sloan-Kettering Cancer Center, New York, New York, USA

Abstract

Abstract Mathematics provides greater understanding of the complex process of tumorigenesis. Based on the Gompertzian phenomenon and the Norton-Simon hypothesis, enhanced cell kill can be obtained through a greater chemotherapy dose rate. Results from the 1995 Bonadonna et al. study and the CALGB/Intergroup C9741 study demonstrated that patients in the dose-dense arms had significantly longer disease-free survival and overall survival. Because of the demonstrated applicability of Gompertzian kinetics, attention has been turned to the etiology of the Gompertzian curve. Breast tumor dimensions, as with all tissue dimensions in biology, can be calculated by fractals. A less cell-dense tissue usually has a lower fractal dimension than a tissue with more cells (i.e., a higher cell density is usually due to a higher fractal dimension). Density is the number of cells divided by the tissue volume. When allowed to grow, the density of a tissue with a lower fractal dimension drops quickly. However, a tumor, since it has a higher fractal mass dimension, maintains a high density as it grows bigger, resulting in a more rapid growth rate and a larger final size. Fractal dimensions of infiltrating ductal adenocarcinomas of the breast are high (i.e., 2.98), which results in a very dense tissue compared with normal breast tissue (with a fractal dimension of about 2.25). As expected, the higher fractal dimension results in a high rate of growth. The reason for this high fractal dimension is that breast cancer can be considered as a conglomerate of many small Gompertzian tumors, each of which has a high cell density and hence ratio of mitosis to apoptosis. In mathematical terms, each component of the conglomerate can be considered a small metastasis in itself. Thus, the primary tumor is composed of multiple self-metastases that form around a seed from the tumor to itself. Conventional thinking is that cancers metastasize because they are large, but in fact it may be that they are large because they are self-metastatic. Many genes are associated with the biology of metastasis; these include: A) obligatory cancer genes (most of which regulate mitosis and mitotic rate); B) genes relating to self-metastasis and growth of tumors at local sites, conferring the ability to invade and grow with high cell density; and C) genes that relate to the ability of the cancer to metastasize to distant areas. Additionally, fibroblasts may send out abnormal growth signals causing abnormal breast tissue growth. Consequently, we are not only dealing with abnormal cancer cells, but also with the tissue that surrounds them, or the microenvironment, that is, the “Smith-Bissell” model. These new insights may lead us to change the thrust of our attack from genes involved in mitosis to those involved in metastasis, including metastasis to self, and to use and further improve dose-dense regimens.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3