Development of the Proteasome Inhibitor PS-341

Author:

Adams Julian1

Affiliation:

1. Millennium Pharmaceuticals, Inc., Cambridge, Massachusetts, USA

Abstract

Abstract Over the last decade, the critical role of the proteasome in cell-cycle regulation has become increasingly apparent. The proteasome, a multicatalytic protease present in all eukaryotic cells, is the primary component of the protein degradation pathway of the cell. By degrading regulatory proteins (or their inhibitors), the proteasome serves as a central conduit for many cellular regulatory signals and, thus, is a novel target for therapeutic drugs. PS-341 is a small molecule that is a potent and selective inhibitor of the proteasome. In vitro and mouse xenograft studies of PS-341 have shown antitumor activity in a variety of tumor types, including myeloma, chronic lymphocytic leukemia, prostate cancer, pancreatic cancer, and colon cancer, among others. Although PS-341 rapidly leaves the vascular compartment, a novel pharmacodynamic assay has shown that inhibition of proteasome—the biologic target—is dose dependent and reversible. These studies provided the rationale for a twice-weekly dosing schedule employed in ongoing clinical studies. Phase I trials in a variety of tumor types have shown PS-341 to be well tolerated, and phase II trials in several hematologic malignancies and solid tumor types are now in progress. Efficacy and safety data from the most advanced of these, a phase II multicenter trial in myeloma, will be available in early 2002.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Reference47 articles.

1. Proteasome inhibitors: a novel class of potent and effective antitumor agents;Adams;Cancer Res,1999

2. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome;Bold;J Surg Res,2001

3. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition;Cusack;Cancer Res,2001

4. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells;Hideshima;Cancer Res,2001

5. et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer;Shah;J Cell Biochem,2001

Cited by 336 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3