Clinical Utility of Liquid Diagnostic Platforms in Non-Small Cell Lung Cancer

Author:

Levy Benjamin1,Hu Zishuo I.1,Cordova Kristen N.2,Close Sandra3,Lee Karen1,Becker Daniel4

Affiliation:

1. Icahn School of Medicine, Mount Sinai Health System, New York, New York, USA

2. Oncology Resource Group, San Francisco, California, USA

3. GenEngine Group, Carlsbad, California, USA

4. Veterans Affairs Hospital, New York University, New York, New York, USA

Abstract

Abstract A firmer understanding of the genomic landscape of lung cancer has recently led to targeted, therapeutic advances in non-small cell lung cancer. Historically, the reference standard for the diagnosis and genetic interrogation for advanced-stage patients has been tissue acquisition via computed tomography-guided core or fine needle aspiration biopsy. However, this process can frequently put the patient at risk and remains complicated by sample availability and tumor heterogeneity. In addition, the time required to complete the diagnostic assays can negatively affect clinical care. Technological advances in recent years have led to the development of blood-based diagnostics or “liquid biopsies” with great potential to quickly diagnose and genotype lung cancer using a minimally invasive technique. Recent studies have suggested that molecular alterations identified in cell-free DNA (cfDNA) or circulating tumor DNA can serve as an accurate molecular proxy of tumor biology and reliably predict the response to tyrosine kinase therapy. In addition, several trials have demonstrated the high accuracy of microRNA (miRNA) platforms in discerning cancerous versus benign nodules in high-risk, screened patients. Despite the promise of these platforms, issues remain, including varying sensitivities and specificities between competing platforms and a lack of standardization of techniques and downstream processing. In the present report, the clinical applications of liquid biopsy technologies, including circulating tumor cells, proteomics, miRNA, and cfDNA for NSCLC, are reviewed and insight is provided into the diagnostic and therapeutic implications and challenges of these platforms.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3