The Role of CDK4/6 Inhibition in Breast Cancer

Author:

Murphy Conleth G.1,Dickler Maura N.2

Affiliation:

1. Department of Medical Oncology, Bon Secours Hospital, Cork, Ireland;

2. Breast Medicine Service, Memorial Sloan Kettering Cancer Center, Weill Medical College of Cornell University, New York, New York, USA

Abstract

Abstract Imbalance of the cyclin D and cyclin-dependent kinase (CDK) pathway in cancer cells may result in diversion away from a pathway to senescence and toward a more proliferative phenotype. Cancer cells may increase cyclin D-dependent activity through a variety of mechanisms. Therapeutic inhibition of CDKs in tumors to negate their evasion of growth suppressors has been identified as a key anticancer strategy. In this review, we outline the development of CDK inhibitory therapy in breast cancer, including the initial experience with the pan-CDK inhibitor flavopiridol and the next generation of oral highly selective CDK4 and CDK6 inhibitors PD0332991 (palbociclib), LEE011 (ribociclib), and LY2835219 (abemaciclib). Data from phase I and II studies in estrogen receptor-positive (ER+) breast cancer demonstrate promising efficacy with manageable toxic effects, chiefly neutropenia. We discuss these studies and the phase III studies that are accruing or nearing completion. We describe the application of such therapy to other breast cancer settings, including HER2-positive breast cancer and the adjuvant treatment of early breast cancer. We also discuss potential concerns surrounding the combination of CDK inhibitors with chemotherapy and their effects on repair of double-strand DNA breaks in cancer cells. Oral highly selective CDK inhibitors show great promise in improving the outcomes of patients with ER+ breast cancer, although caution must apply to their combination with other agents and in the early breast cancer setting.

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Reference82 articles.

1. The hallmarks of cancer;Hanahan;Cell,2000

2. Hallmarks of cancer: The next generation;Hanahan;Cell,2011

3. G1 events and regulation of cell proliferation;Pardee;Science,1989

4. Cyclin-dependent kinases: Engines, clocks, and microprocessors;Morgan;Annu Rev Cell Dev Biol,1997

5. D-type cyclins;Sherr;Trends Biochem Sci,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3