Targeting BRAFV600E with PLX4720 Displays Potent Antimigratory and Anti-invasive Activity in Preclinical Models of Human Thyroid Cancer

Author:

Nucera Carmelo12,Nehs Matthew A.1,Nagarkatti Sushruta S.1,Sadow Peter M.3,Mekel Michal1,Fischer Andrew H.4,Lin Paul S.5,Bollag Gideon E.5,Lawler Jack2,Hodin Richard A.1,Parangi Sareh1

Affiliation:

1. a Thyroid Cancer Research Laboratory, Endocrine Surgery Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

2. e Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA

3. b Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

4. c Department of Pathology, University of Massachusetts, Worcester, Massachusetts, USA;

5. d Plexxikon Inc., Berkeley, California, USA;

Abstract

Abstract Purpose. B-RafV600E may play a role in the progression from papillary thyroid cancer to anaplastic thyroid cancer (ATC). We tested the effects of a highly selective B-RafV600E inhibitor, PLX4720, on proliferation, migration, and invasion both in human thyroid cancer cell lines (8505cB-RafV600E and TPC-1RET/PTC-1 and wild-type B-Raf) and in primary human normal thyroid (NT) follicular cells engineered with or without B-RafV600E. Experimental Design. Large-scale genotyping analysis by mass spectrometry was performed in order to analyze >900 gene mutations. Cell proliferation and migration/invasion were performed upon PLX4720 treatment in 8505c, TPC-1, and NT cells. Orthotopic implantation of either 8505c or TPC-1 cells into the thyroid of severe combined immunodeficient mice was performed. Gene validations were performed by quantitative polymerase chain reaction and immunohistochemistry. Results. We found that PLX4720 reduced in vitro cell proliferation and migration and invasion of 8505c cells, causing early downregulation of genes involved in tumor progression. PLX4720-treated NT cells overexpressing B-RafV600E (heterozygous wild-type B-Raf/B-RafV600E) showed significantly lower cell proliferation, migration, and invasion. PLX4720 treatment did not block cell invasion in TPC-1 cells with wild-type B-Raf, which showed very low and delayed in vivo tumor growth. In vivo, PLX4720 treatment of 8505c orthotopic thyroid tumors inhibited tumor aggressiveness and significantly upregulated the thyroid differentiation markers thyroid transcription factor 1 and paired box gene 8. Conclusions. Here, we have shown that PLX4720 preferentially inhibits migration and invasion of B-RafV600E thyroid cancer cells and tumor aggressiveness. Normal thyroid cells were generated to be heterozygous for wild-type B-Raf/B-RafV600E, mimicking the condition found in most human thyroid cancers. PLX4720 was effective in reducing cell proliferation, migration, and invasion in this heterozygous model. PLX4720 therapy should be tested and considered for a phase I study for the treatment of patients with B-RafV600E ATC.

Funder

A. Gemelli Medical School

Italian Ministry of Education (MIUR)

NIH

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3