Abstract
Cranioplasty, one of the oldest surgical procedures used to repair cranial defects, has undergone many revolutionary changes over time to find the ideal material to improve patient outcome. The surgical challenge in repairing large calvarial defects is known to craniofacial surgeons. Ongoing researches on various cranioplasty materials continue with the help of recent technology. Stem cell experiments and development of morphogenic proteins are expected to take the lead in future. With the aid of Computer Aided Designing technology, all currently used alloplastic materials can be custom made for even large skull defect. We present a case of young female patient following trauma underwent craniotomy and complicated with bone graft loss. Patient initially underwent cranioplasty using a PMMA implant, inspite of its excellent tensile strength was not proven to be effective it sustained fracture and got exposed. A customized osteomesh of polycaprolactone (PCL) with a titanium scaffold with bone morphogenic protein (BMP) was impregnated with stem cells was used in cranioplasty. This aided in osseoinduction, which was later proved by imaging. Empirically, there has been no ideal material for cranioplasty; however, materials that are strong, resistant to infection, radiolucent, inexpensive, and able to reincorporate with a patient's craniotomy defect will offer the greatest advantages for such patients and hence PCL with such qualities proves to be a good alternative. Keywords: Cranioplasty, Composite graft, Osteomesh, Stem cells.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献