Heart Plaque Detection with Improved Accuracy using Decision tree in comparison with Least Squares Support Vector Machine

Author:

Kumar V.S.,Vidhya K.

Abstract

Aim: The main aim of this research is to detect heart plaque using the Decision Tree algorithm with improved accuracy and comparing it with Least Squares Support Vector Machine. Materials and Methods: Decision tree and Least squares Support Vector Machine algorithms are two groups compared in this study. Each group has 20 samples and calculations utilized pretest power of 0.08 with 95% confidence interval. The G power is estimated for samples using clincalc, which has two groups: alpha, power, and enrollment ratio. These samples are split into two groups: training dataset (n = 489 [70%]) and test dataset (n = 277 [30%]). Results: The accuracy obtained for Decision Tree was 68.13 % and 67.3 % for the Least Squares Support Vector Machine technique. Since p (2-tailed) < 0.05, in SPSS statistical analysis, a significant difference exists between the two groups. Conclusion: It is found that the Decision Tree algorithm is significantly better than the Least Squares Support Vector Machine algorithm in Heart plaque disease detection for the dataset considered.

Publisher

RosNOU

Subject

General Medicine,Materials Chemistry,General Medicine,General Medicine,General Materials Science,General Medicine,General Medicine,Aerospace Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3