Classification and Prediction of Heart Disease using Novel Random Forest Algorithm by Comparing Logistic Regression for Obtaining Better Accuracy

Author:

Poojitha T.,Mahaveerakannan R.

Abstract

Aim: Heart attacks are usually caused due to blockages, partially or completely, of the heart’s veins or arteries that constrict the flow of blood from or to the heart. The primary objective of this review aims to be seen as the most appropriate algorithm to give us the ideal prediction. We will be comparing the novel Random forest with Logistic regression to find out which of these can give us the best accuracy. Material and Methods: The study used 143 samples with novel Random Forest and Logistic Regression is executed with varying training and testing splits for foreseeing the accuracy of coronary disease prediction with the 80% of G-power value and heart disease data were gathered from multiple web sources, including latest The study’s findings and criterion were 0.05%, with a 95% probability value, average, and confidence interval. The performance accuracy rate of the classifiers is used to evaluate the coronary disease dataset. There was a statistically significant value test between the novel Random Forest and Logistic Regression is 0.046 (p<0.05). Results and Discussion: The accuracy of predicting coronary disease in the novel Random Forest 90.16 % and Logistic Regression 85.25 % is obtained. Conclusion: This study concludes that the Prediction of Coronary disease using the novel Random Forest (RF) algorithm looks to be fundamentally superior to the Logistic Regression (LR) with increased precision.

Publisher

RosNOU

Subject

General Earth and Planetary Sciences,General Environmental Science,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,General Medicine,General Medicine,General Medicine,Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine,Geology,Ocean Engineering,Water Science and Technology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiovascular Disease Prediction based on Decision Tree;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09

2. A Stable Lifting Convolutional Autoencoder for Anomaly Detection of Turbopump Bearings of Liquid Rocket Engine;2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3