Author:
Kit O.I.,Frantsiyants E.M.,Neskubina I.V.,Shikhlyarova A.I.,Kaplieva I.V.
Abstract
Mitochondria are dynamic organelles which constantly change their shape, size, and location within the cells. Mitochondrial dynamics is associated with mesenchymal metabolism or epithelial-mesenchymal transition to regulate the stem cell differentiation, proliferation, migration, and apoptosis. The transfer of mitochondria from one cell to another is necessary to improve and maintain homeostasis in an organism. Mitochondrial transplantation is a therapeutic approach that involves an introduction of healthy mitochondria into damaged organs. Recent evidence data have shown that the physiological properties of healthy mitochondria provide their ability to replace damaged mitochondria, with suggesting that replacing damaged mitochondria with healthy mitochondria may protect cells from further damage. Moreover, mitochondria can also be actively released into the extracellular space and potentially be transferred between the cells in the central nervous system. This increased interest in mitochondrial therapy calls for a deeper understanding of the mechanisms, which build the basis for mitochondrial transfer, uptake, and cellular defense. In this review, questions related to the involvement of mitochondria in the pathogenesis of cancer will be discussed. Particular attention will be paid to mitochondrial transplantation as a therapeutic approach to treat the mitochondrial dysfunction under some pathological conditions.
Reference69 articles.
1. Grasso D, et sl. 2020 Mitochondria in cancer. Cell stress. 2020; 4(6):114–146. https://doi.org/10.15698/ cst2020.06.221.
2. Klein K, et al. Role of Mitochondria in Cancer Immune Evasion and Potential Therapeutic Approaches. Frontiers in immunology. 2020; 11: 573326. https:// doi.org/10.3389/fimmu.2020.573326
3. Nomoto S, Yamashita K, Koshikawa K, Nakao A, Sidransky D. Mitochondrial D-loop mutations as clonal markers in multicentric hepatocellular carcinoma and plasma. Clin Cancer Res. 2002;8(2):481–487.
4. Eng C, Kiuru M, Fernandez MJ, Aaltonen LA. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer. 2003;3(3):193–202. doi: 10.1038/nrc1013.
5. Kumari S, Badana AK, G MM, G S, Malla R. Reactive Oxygen Species: A Key Constituent in Cancer Survival. Biomark Insights. 2018;13:1177271918755391. doi: 10.1177/1177271918755391.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献