Heart Disease Prediction Based on Age Detection using Novel Logistic Regression over Decision Tree
Author:
Karthi C.B.M.,Kalaivani A.
Abstract
Aim: To improve the accuracy in Heart Disease Prediction using Novel Logistic Regression and Decision tree Materials and Methods: This study contains 2 groups i.e Novel Logistic Regression and Decision tree Each group consists of a sample size of 10 and the study parameters include alpha value 0.01, beta value 0.2, and the Gpower value 0.8. Results: The Novel Logistic Regression (91.60) achieved improved accuracy than the Decision Tree (89.42) in Heart Disease Prediction. The statistical significance difference is 0.01 (p<0.05). Conclusion: The Novel Logistic Regression model is significantly better than the Decision Tree in Heart Disease Prediction. It can be also considered as a better option for Heart Disease Prediction.
Subject
General Medicine,Materials Chemistry,General Medicine,General Medicine,General Materials Science,General Medicine,General Medicine,Aerospace Engineering,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献