Naturally Occurring Glucokinase Mutations Are Associated with Defects in Posttranslational S-Nitrosylation

Author:

Ding Shi-Ying1,Tribble Nicholas D.2,Kraft Catherine A.1,Markwardt Michele1,Gloyn Anna L.2,Rizzo Mark A.1

Affiliation:

1. Department of Physiology (S.D., C.A.K., M.M., M.A.R.), University of Maryland School of Medicine, Baltimore, Maryland 21201

2. Diabetes Research Laboratories (N.D.T., A.L.G), Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, United Kingdom OX3 7LJ

Abstract

Abstract Posttranslational activation of glucokinase (GCK) through S-nitrosylation has been recently observed in the insulin-secreting pancreatic β-cell; however, the function of this molecular mechanism in regulating the physiology of insulin secretion is not well understood. To more fully understand the function of posttranslational regulation of GCK, we examined two naturally occurring GCK mutations that map to residues proximal to the S-nitrosylated cysteine and cause mild fasting hyperglycemia (maturity-onset diabetes of the young; subtype glucokinase). The kinetics of recombinantly generated GCK-R369P and GCK-V367M were assessed in vitro. The GCK-R369P protein has greatly reduced catalytic activity (relative activity index 0.05 vs. 1.00 for wild type), whereas the GCK-V367M has near normal kinetics (relative activity index 1.26 vs. 1.00 for wild type). Quantitative imaging and biochemical assays were used to assess the effect of these mutants on the metabolic response to glucose, GCK activation, and S-nitrosylation of GCK in βTC3 insulinoma cells. Expression of either mutant in βTC3 cells did not affect the metabolic response to 5 mm glucose. However, expression of either mutant blocked the effects of insulin on glucose-stimulated nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate reduction, suggesting defects in posttranslational regulation of GCK. Each of these mutations blocked GCK activation, and prevented posttranslational cysteine S-nitrosylation. Our findings link defects in hormone-regulated GCK S-nitrosylation to hyperglycemia and support a role for posttranslational regulation of GCK S-nitrosylation as a vital regulatory mechanism for glucose-stimulated insulin secretion.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3