In Vivo Targeting of the Growth Hormone Receptor (GHR) Box1 Sequence Demonstrates that the GHR Does Not Signal Exclusively through JAK2

Author:

Barclay Johanna L.1,Kerr Linda M.1,Arthur Leela1,Rowland Jennifer E.23,Nelson Caroline N.1,Ishikawa Mayumi4,d'Aniello Elisabetta M.1,White Mary2,Noakes Peter G.2,Waters Michael J.1

Affiliation:

1. Institute for Molecular Bioscience (J.L.B., L.M.K., L.A., C.N.N., E.M.d.A., M.J.W.), St. Lucia, Australia 4072

2. School of Biomedical Sciences (J.E.R., M.W., P.G.N.), University of Queensland, St. Lucia, Australia 4072

3. Instituto Gulbenkian de Ciencia (J.E.R.), 2780 Oeiras, Portugal

4. Department of Internal Medicine (M.I.), Toho University School of Medicine, Tokyo 143-8540, Japan

Abstract

AbstractGH is generally believed to signal exclusively through Janus tyrosine kinases (JAK), particularly JAK2, leading to activation of signal transducers and activators of transcription (STAT), ERK and phosphatidylinositol 3-kinase pathways, resulting in transcriptional regulation of target genes. Here we report the creation of targeted knock-in mice wherein the Box1 motif required for JAK2 activation by the GH receptor (GHR) has been disabled by four Pro/Ala mutations. These mice are unable to activate hepatic JAK2, STAT3, STAT5, or Akt in response to GH injection but can activate Src and ERK1/2. Their phenotype is identical to that of the GHR−/− mouse, emphasizing the key role of JAK2 in postnatal growth and the minimization of obesity in older males. In particular, they show dysregulation of the IGF-I/IGF-binding protein axis at transcript and protein levels and decreased bone length. Because no gross phenotypic differences were evident between GHR−/− and Box1 mutants, we undertook transcript profiling in liver from 4-month-old males. We compared their transcript profiles with our 391-GHR truncated mice, which activate JAK2, ERK1/2, and STAT3 in response to GH but not STAT5a/b. This has allowed us for the first time to identify in vivo Src/ERK-regulated transcripts, JAK2-regulated transcripts, and those regulated by the distal part of the GHR, particularly by STAT5.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3