Stimulation of Aromatase P450 Promoter (II) Activity in Endometriosis and Its Inhibition in Endometrium Are Regulated by Competitive Binding of Steroidogenic Factor-1 and Chicken Ovalbumin Upstream Promoter Transcription Factor to the Same cis-Acting Element

Author:

Zeitoun Khaled1,Takayama Kazuto1,Michael M. Dod1,Bulun Serdar E.1

Affiliation:

1. Cecil H. Ida Green Center for Reproductive Biology Sciences Department of Obstetrics and Gynecology The University of Texas Southwestern Medical Center Dallas, Texas 75235-9051

Abstract

Abstract In stromal cells of endometriosis, marked levels of aromatase P450 (P450arom) mRNA and activity are present and can be vigorously stimulated by (Bu)2cAMP or PGE2 to give rise to physiologically significant estrogen biosynthesis. Since eutopic endometrial tissue or stromal cells lack P450arom expression, we studied the molecular basis for differential P450arom expression in endometriosis and eutopic endometrium. First, we demonstrated by rapid amplification of cDNA 5′-ends that P450arom expression in pelvic endometriotic lesions is regulated almost exclusively via the alternative promoter II. Then, luciferase reporter plasmids containing deletion mutations of the 5′-flanking region of promoter II were transfected into endometriotic stromal cells. We identified two critical regulatory regions for cAMP induction of promoter II activity: 1) a −214/−100 bp proximal region responsible for a 3.7-fold induction, and 2) a −517/−214 distal region responsible for potentiation of cAMP response up to 13-fold. In the −214/−100 region, we studied eutopic endometrial and endometriotic nuclear protein binding to a nuclear receptor half-site (NRHS, AGGTCA) and an imperfect cAMP response element (TGCACGTCA). Using electrophoretic mobility shift assay, cAMP response element-binding activity in nuclear proteins from both endometriotic and eutopic endometrial cells gave rise to formation of identical DNA-protein complexes. The NRHS probe, on the other hand, formed a distinct complex with nuclear proteins from endometriotic cells, which migrated at a much faster rate compared with the complex formed with nuclear proteins from eutopic endometrial cells. Employing recombinant proteins and antibodies against steroidogenic factor-1 (SF-1) and chicken ovalbumin upstream promoter transcription factor (COUP-TF), we demonstrated that COUP-TF but not SF-1 bound to NRHS in eutopic endometrial cells, whereas SF-1 was the primary NRHS-binding protein in endometriotic cells. In fact, COUP-TF transcripts were present in both eutopic endometrial (n = 12) and endometriotic tissues (n = 8), whereas SF-1 transcripts were detected in all endometriotic tissues (n = 12), but in only 3 of 15 eutopic endometrial tissues. Moreover, we demonstrated a dose-dependent direct competition between SF-1 and COUP-TF for occupancy of the NRHS, to which SF-1 bound with a higher affinity. Finally, overexpression of SF-1 in eutopic endometrial and endometriotic cells strikingly potentiated baseline and cAMP-induced activities of −517 promoter II construct, whereas overexpression of COUP-TF almost completely abolished these activities. In conclusion, COUP-TF might be one of the factors responsible for the inhibition of P450arom expression in eutopic endometrial stromal cells, which lack SF-1 expression in the majority (80%) of the samples; in contrast, aberrant SF-1 expression in endometriotic stromal cells can override this inhibition by competing for the same DNA-binding site, which is likely to account for high levels of baseline and cAMP-induced aromatase activity.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3