GnRH Increases c-Fos Half-Life Contributing to Higher FSHβ Induction

Author:

Reddy Gaddameedi R.1,Xie Changchuan1,Lindaman Lacey L.1,Coss Djurdjica1

Affiliation:

1. Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674

Abstract

AbstractGnRH is a potent hypothalamic regulator of gonadotropin hormones, LH and FSH, which are both expressed within the pituitary gonadotrope and are necessary for the stimulation of gametogenesis and steroidogenesis in the gonads. Differential regulation of LH and FSH, which is essential for reproductive fitness, is achieved, in part, through the varying of GnRH pulse frequency. However, the mechanism controlling the increase in FSH during the periods of low GnRH has not been elucidated. Here, we uncover another level of regulation by GnRH that contributes to differential expression of the gonadotropins and may play an important role for the generation of the secondary rise of FSH that stimulates folliculogenesis. GnRH stimulates LHβ and FSHβ subunit transcription via induction of the immediate early genes, Egr1 and c-Fos, respectively. Here, we determined that GnRH induces rapidly both Egr1 and c-Fos, but specifically decreases the rate of c-Fos degradation. In particular, GnRH modulates the rate of c-Fos protein turnover by inducing c-Fos phosphorylation through the ERK1/2 pathway. This extends the half-life of c-Fos, which is normally rapidly degraded. Confirming the role of phosphorylation in promoting increased protein activity, we show that a c-Fos mutant that cannot be phosphorylated by GnRH induces lower expression of the FHSβ promoter than wild-type c-Fos. Our studies expand upon the role of GnRH in the regulation of gonadotropin gene expression by highlighting the role of c-Fos posttranslational modification that may cause higher levels of FSH during the time of low GnRH pulse frequency to stimulate follicular growth.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3