20-HETE Induces Hyperglycemia through the cAMP/PKA-PhK-GP Pathway

Author:

Lai Guangrui12,Wu Jingjing12,Liu Xiaoliang1,Zhao Yanyan12

Affiliation:

1. Department of Clinical Genetics (G.L., J.W., X.L., Y.Z.), China Medical University, Shenyang, Liaoning, 110004 Peoples Republic of China

2. Shengjing Hospital of China Medical University and Department of Medical Genetics (G.L., J.W., Y.Z.), China Medical University, Shenyang, Liaoning, 110004 Peoples Republic of China

Abstract

Abstract We previously generated cytochrome P450 4F2 (CYP4F2) transgenic mice and showed high 20-hydroxyeicosatetraenoic acid (20-HETE) production, which resulted in an elevation of blood pressure. However, it was unclear whether 20-HETE affected glucose metabolism. We measured fasting plasma glucose, insulin, hepatic CYP4F2 expression, and 20-HETE production by hepatic microsomes, and hepatic 20-HETE levels in transgenic mice. We also assessed glycogen phosphorylase (GP) activity and the cAMP/protein kinase A (PKA)-phosphorylase kinase (PhK)-GP pathway, as well as expressions of insulin receptor substrate 1 and glucose transporters in vivo and in vitro. The transgenic mice had overexpressed hepatic CYP4F2, high hepatic 20-HETE and fasting plasma glucose levels but normal insulin level. The GP activity was increased and the cAMP/PKA-PhK-GP pathway was activated in the transgenic mice compared with wild-type mice. Moreover, these alterations were eliminated with the addition of N-hydroxy-N′-(4-butyl-2 methylphenyl) formamidine, which is a selective 20-HETE inhibitor. The results were further validated in Bel7402 cells. In addition, the transgenic mice had functional insulin signaling, and 20-HETE had no effect on insulin signaling in Bel7402 cells, excluding that the observed hyperglycemia in CYP4F2 transgenic mice resulted from insulin dysfunction, because the target tissues were sensitive to insulin. Our study suggested that 20-HETE can induce hyperglycemia, at least in part, through the cAMP/PKA-PhK-GP pathway but not through the insulin-signaling pathway.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3