Maternal Fructose Intake during Pregnancy and Lactation Alters Placental Growth and Leads to Sex-Specific Changes in Fetal and Neonatal Endocrine Function

Author:

Vickers M. H.1,Clayton Z. E.1,Yap C.1,Sloboda D. M.1

Affiliation:

1. Liggins Institute and the National Research Centre for Growth and Development, University of Auckland, Auckland 1142, New Zealand

Abstract

AbstractThe effects of maternal fructose intake on offspring health remain largely unknown, despite the marked increase in consumption of sweetened beverages that has paralleled the obesity epidemic. The present study investigated the impact of maternal fructose intake on placental, fetal, and neonatal development. Female Wistar rats were time-mated and allocated to receive either water [control (CONT)] or fructose solution designed to provide 20% of caloric intake from fructose (FR). FR was administered from d 1 of pregnancy until postnatal day (P) 10. All dams had ad libitum access to standard laboratory chow and water. Dams and offspring were killed at embryonic day (E) 21 and P10. FR dams demonstrated increased total caloric intake and maternal hyperinsulinemia at E21 as well as increased maternal plasma fructose levels at E21 and P10. FR intake did not alter maternal blood glucose, β-hydroxybutyrate (BHB), or electrolyte levels at either time point. Fetal weights at E21 were unchanged, although placental weights were reduced in FR female but not FR male fetuses. Plasma leptin, fructose, and blood glucose levels were increased and BHB levels decreased in FR female but not male fetuses. Plasma insulin levels were not different between CONT and FR groups. Male and female FR neonates had higher plasma fructose levels and were hypoinsulinemic but euglycemic at P10 compared with CONT. Blood BHB levels were increased in FR male neonates but not females at P10. P10 plasma leptin levels were not different between groups. Stomach content leptin levels were increased in all FR offspring at P10, but no differences in stomach content insulin or fructose levels were observed. This study reports for the first time that maternal FR intake resulted in sex-specific changes in offspring development, whereby females appear more vulnerable to metabolic compromise during neonatal life. Independent follow-up studies are essential to investigate the long-term consequences of maternal FR consumption on offspring health.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3