Affiliation:
1. Wallace H. Coulter Department of Biomedical Engineering (M.Z., B.D.B., Z.S.), Georgia Institute of Technology, Atlanta, Georgia 30332-0363
2. Department of Biochemistry and Molecular Biology (D.H.C.), University of Texas Medical Branch, Galveston, Texas 77555-0144
Abstract
AbstractEstrogens cause growth plate closure in both males and females, by decreasing proliferation and inducing apoptosis of postproliferative growth plate chondrocytes. In vitro studies using 17β-estradiol (E2) conjugated to bovine serum albumin (E2-BSA) show that rat costochondral growth plate resting zone chondrocytes also respond to E2. Moreover, they are regulated by E2-BSA via a protein kinase C and ERK MAPK signaling pathway that is functional only in female cells. To better understand how E2 regulates apoptosis of growth plate chondrocytes, rat resting zone chondrocytes cells were treated with E2 or E2-BSA. E2 caused apoptosis in male and female resting zone and growth zone chondrocytes in a dose-dependent manner, based on elevated DNA fragmentation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining and caspase-3 activation. E2 also up-regulated p53 and Bax protein (Bcl-2-associated X protein) levels and induced release of cytochrome C from the mitochondria, indicating a mitochondrial apoptotic pathway. The apoptotic effect of E2 did not involve elevated nitric oxide production or MAPKs. It was reduced by ICI 182780, which is an estrogen receptor (ER) antagonist and blocked by antibodies to Erα36, a membrane-associated ER. E2-BSA reduced cell viability and increased caspase-3 activity; ICI 182780 had no effect, but anti-ERα36 antibodies blocked the effect. The results indicate that estrogen is able to directly affect the cell population kinetics of growth plate chondrocytes by regulating apoptosis, as well as proliferation and differentiation in both resting zone and growth zone cells. They also have provided further information about the physiological functions of estrogen on longitudinal bone growth.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献