A Promising Culture Model for Analyzing the Interaction between Adipose Tissue and Cardiomyocytes

Author:

Anan Mayumi12,Uchihashi Kazuyoshi1,Aoki Shigehisa1,Matsunobu Aki1,Ootani Akifumi3,Node Koichi2,Toda Shuji1

Affiliation:

1. Department of Pathology and Microbiology (M.A., K.U., S.A., A.M., S.T.), Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan

2. Divisions of Cardiovascular and Renal Medicine (M.A., K.N.), Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan

3. Gastroenterology (A.O.), Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan

Abstract

Abstract The heart has epicardial adipose tissue that produces adipokines and mesenchymal stem cells. Systemic adipose tissue is involved in the pathophysiology of obesity-related heart diseases. However, the method for analyzing the direct interaction between adipose tissue and cardiomyocytes has not been established. Here we show the novel model, using collagen gel coculture of adipose tissue fragments (ATFs) and HL-1 cardiomyocytes, and electron microscopy, immunohistochemistry, real-time RT-PCR, and ELISA. HL-1 cells formed a stratified layer on ATF-nonembedded gel, whereas they formed almost a monolayer on ATF-embedded gel. ATFs promoted the apoptosis, lipid accumulation, and fatty acid transport protein (FATP) expression of FATP4 and CD36 in HL-1 cells, whereas ATFs inhibited the growth and mRNA expression of myosin, troponin T, and atrial natriuretic peptide. Treatment of leptin (100 ng/ml) and adiponectin (10 μg/ml) neither replicated nor abolished the ATF-induced morphology of HL-1 cells, whereas that of FATP4 and CD36 antibodies (25 μg/ml) never abolished it. HL-1 cells prohibited the development of CD44+/CD105+ mesenchymal stem cell-like cells and lipid-laden preadipocytes from ATFs. HL-1 cells increased the production of adiponectin in ATFs, whereas they decreased that of leptin. The data indicate that our model actively creates adipose tissue-HL-1 cardiomyocyte interaction, suggesting first that ATFs may be related to the lipotoxiciy of HL-1 cells via unknown factors plus FATP4 and CD36 and second that HL-1 cells may help to retain the static state of ATFs, affecting adipokine secretion. Our model will serve to study adipose tissue-cardiomyocyte interaction and mechanisms of obesity-related lipotoxicity and heart diseases.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3