BAX-Dependent and BAX-Independent Regulation of Kiss1 Neuron Development in Mice

Author:

Semaan Sheila J.1,Murray Elaine K.2,Poling Matthew C.1,Dhamija Sangeeta1,Forger Nancy G.2,Kauffman Alexander S.13

Affiliation:

1. Department of Reproductive Medicine (S.J.S., M.C.P., S.D., A.S.K.), University of California San Diego, La Jolla, California 92093

2. Department of Psychology and Center for Neuroendocrine Studies (E.K.M., N.G.F.), University of Massachusetts, Amherst, Massachusetts 01003

3. Center for Chronobiology (A.S.K.), University of California San Diego, La Jolla, California 92093

Abstract

The Kiss1 gene and its product kisspeptin are important regulators of reproduction. In rodents, Kiss1 is expressed in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV)/rostral periventricular (PeN) nuclei. In the AVPV/PeN, females have more Kiss1 and tyrosine hydroxylase (TH) neurons than males. We explored the ontogeny of the Kiss1 sex difference, and the role of cell death in establishing Kiss1 and TH cell number. We also determined whether Kiss1 cells in AVPV/PeN coexpress TH. AVPV/PeN Kiss1 neurons were first detected in both sexes on postnatal d 10, but the Kiss1 sex difference did not emerge until postnatal d 12. The role of BAX-mediated apoptosis in generating this sex difference was tested in adult Bax knockout (KO) and wild-type mice. Deletion of Bax did not diminish the sex difference in Kiss1 expression in the AVPV/PeN. TH expression was sexually dimorphic in the AVPV of both wild-type and Bax KO mice but, unlike Kiss1, was not sexually dimorphic in the PeN of either genotype. Double-label analysis determined that most Kiss1 neurons coexpress TH mRNA, but many TH neurons do not coexpress Kiss1, especially in the PeN. These findings suggest that several subpopulations of TH cells reside within the AVPV/PeN, only one of which coexpresses Kiss1. In the ARC, Kiss1 cell number was markedly increased in Bax KO mice of both sexes, indicating that although BAX-dependent apoptosis does not generate the sex difference in either Kiss1 or TH expression in AVPV/PeN, BAX does importantly regulate Kiss1 cell number in the ARC.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3