DNA Methylation of Intronic Enhancers Directs Tissue-Specific Expression of Steroidogenic Factor 1/Adrenal 4 Binding Protein (SF-1/Ad4BP)

Author:

Hoivik Erling A.1,Bjanesoy Trine E.1,Mai Oliver2,Okamoto Shiki3,Minokoshi Yasuhiko3,Shima Yuichi4,Morohashi Ken-ichirou4,Boehm Ulrich2,Bakke Marit1

Affiliation:

1. Department of Biomedicine (E.A.H., T.E.B., M.B.), University of Bergen, 5009 Bergen, Norway;

2. Institute for Neural Signal Transduction (O.M., U.B.), Center for Molecular Neurobiology, D-20251 Hamburg, Germany;

3. Division of Endocrinology and Metabolism (S.O., Y.M.), Department of Developmental Physiology, National Institute of Physiological Sciences, Okazaki, 444-8585 Japan;

4. Department of Molecular Biology (Y.S., K.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, 819-0395 Japan

Abstract

The nuclear receptor steroidogenic factor 1/adrenal 4 binding protein (SF-1/Ad4BP) is an essential regulator of endocrine development and function, and the expression of the corresponding gene (sf-1/ad4bp) is precisely regulated in a time- and tissue-dependent manner. We previously demonstrated that the basal promoter of sf-1/ad4bp is controlled by DNA methylation and that its methylation status reflects the expression pattern of SF-1/Ad4BP. Recently, three intronic enhancers were identified in the sf-1/ad4bp gene that target SF-1/Ad4BP expression to the fetal adrenal (FAdE; fetal adrenal-specific enhancer), to pituitary gonadotropes (PGE; pituitary gonadotrope-specific enhancer), and to the ventromedial hypothalamic nucleus (VMHE; ventromedial hypothalamic nucleus-specific enhancer). Here, we demonstrate that the activity of these enhancers is correlated with their DNA methylation status. We show that they are hypomethylated in tissues where they are active and generally hypermethylated in tissues where they are not active. Furthermore, we demonstrate in transient transfection experiments that forced DNA methylation represses reporter gene activity driven by these enhancers. These data directly demonstrate a functional significance for the enhancers' methylation status. Intriguingly, further analyses of the basal promoter in gonadotropes revealed that it is methylated in these cells, in contrast to other SF-1/Ad4BP-expressing tissues. Consistent with this, sf-1/ad4bp is transcribed from an alternative promoter in gonadotropes. Taken together, our experiments show that the tissue-specific expression of SF-1/Ad4BP is epigenetically regulated and identify tissue-specific differentially methylated regions within the sf-1/ad4bp locus that are essential for its transcriptional control.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3