A Circadian Clock Entrained by Melatonin Is Ticking in the Rat Fetal Adrenal

Author:

Torres-Farfan C.1,Mendez N.1,Abarzua-Catalan L.1,Vilches N.1,Valenzuela G. J.2,Seron-Ferre M.13

Affiliation:

1. Programa de Fisiopatología (C.T.-F., N.M., L.A.-C., N.V., M.S.-F.), Instituto de Ciencias Biomédicas Facultad de Medicina, Universidad de Chile, Santiago 9, Santiago, Chile;

2. Department of Women's Health (G.J.V.), Arrowhead Regional Medical Center, Colton, California 92324;

3. Universidad de Tarapaca (M.S.-F.), 1775 Arica, Chile

Abstract

The adrenal gland in the adult is a peripheral circadian clock involved in the coordination of energy intake and expenditure, required for adaptation to the external environment. During fetal life, a peripheral circadian clock is present in the nonhuman primate adrenal gland. Whether this extends to the fetal adrenal gland like the rat is unknown. Here we explored in vivo and in vitro whether the rat fetal adrenal is a peripheral circadian clock entrained by melatonin. We measured the 24-h changes in adrenal content of corticosterone and in the expression of clock genes Per-2 and Bmal-1 and of steroidogenic acute regulatory protein (StAR), Mt1 melatonin receptor, and early growth response protein 1 (Egr-1) expression. In culture, we explored whether oscillatory expression of these genes persisted during 48 h and the effect of a 4-h melatonin pulse on their expression. In vivo, the rat fetal adrenal gland showed circadian expression of Bmal-1 and Per-2 in antiphase (acrophases at 2200 and 1300 h, respectively) as well as of Mt1 and Egr-1. This was accompanied by circadian rhythms of corticosterone content and of StAR expression both peaking at 0600 h. The 24-h oscillatory expression of Bmal-1, Per-2, StAR, Mt1, and Egr-1 persisted during 48 h in culture; however, the antiphase between Per-2 and Bmal-1 was lost. The pulse of melatonin shifted the acrophases of all the genes studied and restored the antiphase between Per-2 and Bmal-1. Thus, in the rat, the fetal adrenal is a strong peripheral clock potentially amenable to regulation by maternal melatonin.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3