An Improved Method for Recording Tail Skin Temperature in the Rat Reveals Changes During the Estrous Cycle and Effects of Ovarian Steroids

Author:

Williams Hemalini1,Dacks Penny A.1,Rance Naomi E.12

Affiliation:

1. Departments of Pathology (H.W., P.A.D., N.E.R.), University of Arizona College of Medicine, Tucson, Arizona 85724

2. Cell Biology and Anatomy (N.E.R.), Neurology, and the Evelyn F. McKnight Brain Research Institute, University of Arizona College of Medicine, Tucson, Arizona 85724

Abstract

In the rat, tail skin vasomotion is a primary heat loss mechanism that can be monitored by changes in tail skin temperature (TSKIN). Previous studies showed that ovariectomy and estrogen replacement modify TSKIN in the rat. Based on these findings, the ovariectomized (OVX) rat has been used as a model to study the mechanisms and treatment of menopausal hot flushes. It is not known, however, if TSKIN changes across the estrous cycle in intact rats. Here, we describe an improved method for monitoring TSKIN in freely moving rats using a SubCue Mini datalogger mounted on the ventral surface of the tail. This method is noninvasive, cost-effective, and does not require restraints or tethering. We observed a distinct pattern of TSKIN across the estrous cycle characterized by low TSKIN on proestrous night. To determine whether this pattern was secondary to secretion of ovarian steroids, we monitored the thermoregulatory effects of 17β-estradiol (E2) and E2 plus progesterone, administered via SILASTIC capsules to OVX rats. E2 treatment of OVX rats significantly reduced TSKIN in the dark phase from 2 to 21 d after hormone treatment. The TSKIN of E2-treated OVX animals was not significantly different from OVX rats receiving E2 plus progesterone. These data provide evidence that the reduction in TSKIN on proestrous night was secondary to elevated levels of ovarian estrogens. This study provides the first description of TSKIN changes with the estrous cycle and supports the role of estrogens in normal thermoregulation in the rat.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3