Quantitative Analysis of Glucose Transporter mRNAs in Endometrial Stromal Cells Reveals Critical Role of GLUT1 in Uterine Receptivity

Author:

Frolova Antonina I.1,Moley Kelle H.1

Affiliation:

1. Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

Recurrent miscarriages affect about 1–2% of couples trying to conceive; however, mechanisms leading to this complication are largely unknown. Most studies focus on the early embryo, but proper development and implantation of the blastocyst are also dependent on optimal endometrial progression into a receptive state. One of the key steps in the uterine preparation for embryo receptivity, known as decidualization, is the differentiation of endometrial stromal cells (ESCs) into decidual cells. During this transition, the ESCs undergo a drastic change in glucose metabolism. The efficiency of glucose uptake is determined by a family of facilitative glucose transporters (GLUTs), and many have been identified in the stroma. The primary focus of this work was to quantify the absolute amount of GLUT mRNAs in this cell type before and after decidualization. We used primary ESCs isolated from murine and human uteri. We developed and validated cDNA-based calibration curves for each GLUT and used these primers to arrive at absolute mRNA copy numbers. Here, we report all the GLUT mRNAs that are present in the ESCs and their abundance under both conditions, control and decidualized. GLUT1 mRNA is the most abundant and critical transporter in ESCs of both species, because knocking down this GLUT with sort hairpin RNA leads to dramatically reduced decidualization. These findings suggest that GLUT1 mRNA expression is essential for decidualization and we are the first to determine a possible mechanism to explain how maternal conditions of abnormal glucose utilization may impair implantation at the level of the ESCs.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3