Changes in Gene Expression during Pituitary Morphogenesis and Organogenesis in the Chick Embryo

Author:

Proszkowiec-Weglarz Monika1,Higgins Stacy E.1,Porter Tom E.1

Affiliation:

1. Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742

Abstract

The anterior pituitary gland plays an important role in the regulation of many physiological processes. Formation of Rathke's pouch (RP), the precursor of the anterior pituitary, involves evagination of the oral ectoderm in a multi-step process regulated by cell interactions, signaling pathways, and transcription factors. Chickens are an excellent model to study development because of the availability of large sample sizes, accurate timing of development, and embryo accessibility. The aim of this study was to quantify mRNA expression patterns in the developing chicken anterior pituitary to evaluate the chicken embryo as a model for mammalian pituitary development. The expression profiles of 16 genes differentially expressed in RP and neuroectoderm were determined in this study. Among these, Pitx1, Pitx2, and Hesx1 mRNA levels were high on embryonic days (e) 2.5 to e3 in RP and decreased during development. Expression of Pit1 and Tbx19 mRNA in RP reached the highest levels by e7 and e6.5, respectively. Levels of glycoprotein subunit α mRNA increased beginning at e4. FGF8 mRNA showed the highest expression at e3 to e3.5 in neuroectoderm. BMP2 showed slight decreases in mRNA expression in both tissues during development, while Isl1 and Noggin mRNA expression increased in later development. Taken together, we present the first quantitative transcriptional profile of pituitary organogenesis. Our results will help further understanding of the functional development of this gland. Moreover, because of the high similarity in gene expression patterns observed between chicken and mouse, chickens could serve as an excellent model to study genetic and molecular mechanisms underlying pituitary development.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3