Aldosterone Production in Human Adrenocortical Cells Is Stimulated by High-Density Lipoprotein 2 (HDL2) through Increased Expression of Aldosterone Synthase (CYP11B2)

Author:

Xing Yewei1,Cohen Anthony1,Rothblat George2,Sankaranarayanan Sandhya2,Weibel Ginny2,Royer Lori3,Francone Omar L.3,Rainey William E.1

Affiliation:

1. Department of Physiology (Y.X., A.C., W.E.R.), Medical College of Georgia, Augusta, Georgia 30912

2. Joseph Stokes Jr. Research Institute (G.R., S.S., G.W.), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104

3. Pfizer Global Research and Development (L.R., O.L.F.), Department of Cardiovascular and Metabolic Diseases, Groton, Connecticut 06340

Abstract

Adrenal aldosterone production is regulated by physiological agonists at the level of early and late rate-limiting steps. Numerous studies have focused on the role of lipoproteins including high-density lipoprotein (HDL) as cholesterol providers in this process; however, recent research suggests that HDL can also act as a signaling molecule. Herein, we used the human H295R adrenocortical cell model to study the effects of HDL on adrenal aldosterone production and CYP11B2 expression. HDL, especially HDL2, stimulated aldosterone synthesis by increasing expression of CYP11B2. HDL treatment increased CYP11B2 mRNA in both a concentration- and time-dependent manner, with a maximal 19-fold increase (24 h, 250 μg/ml of HDL). Effects of HDL on CYP11B2 were not additive with natural agonists including angiotensin II or K+. HDL effects were likely mediated by a calcium signaling cascade, because a calcium channel blocker and a calmodulin kinase inhibitor abolished the CYP11B2-stimulating effects. Of the two subfractions of HDL, HDL2 was more potent than HDL3 in stimulating aldosterone and CYP11B2. Further studies are needed to identify the active components of HDL, which regulate aldosterone production.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3