Adipose Triglyceride Lipase-Null Mice Are Resistant to High-Fat Diet–Induced Insulin Resistance Despite Reduced Energy Expenditure and Ectopic Lipid Accumulation

Author:

Hoy Andrew J.1,Bruce Clinton R.2,Turpin Sarah M.1,Morris Alexander J.1,Febbraio Mark A.2,Watt Matthew J.1

Affiliation:

1. Biology of Lipid Metabolism Laboratory, Department of Physiology (A.J.H., S.M.T., A.J.M., M.J.W.), Monash University, Clayton, Victoria, 3800, Australia

2. Cellular & Molecular Metabolism Laboratory (C.R.B., M.A.F.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, 3004, Australia

Abstract

AbstractAdipose triglyceride lipase (ATGL) null (−/−) mice store vast amounts of triacylglycerol in key glucoregulatory tissues yet exhibit enhanced insulin sensitivity and glucose tolerance. The mechanisms underpinning these divergent observations are unknown but may relate to the reduced availability of circulating fatty acids. The aim of this study was to determine whether the enhancements in insulin stimulated glucose metabolism in ATGL−/− mice persist when challenged with a high-fat diet. ATGL−/− mice fed a low-fat diet exhibit improved whole-body insulin sensitivity and glucose tolerance compared with wild-type mice. Wild-type mice became hyperlipidemic and insulin-resistant when challenged with a high-fat diet (HFD, 60% fat) for 4 wk. ATGL−/− mice fed a HFD had elevated circulating fatty acids but had reduced fasting glycemia compared to pre–high-fat diet levels and were refractory to glucose intolerance and insulin resistance. This protection from high-fat diet–induced metabolic perturbations was associated with a preference for fatty acid utilization but reduced energy expenditure and no change in markers of mitochondrial capacity or density. The protection from high-fat diet–induced insulin resistance in ATGL−/− mice was due to increased cardiac and liver insulin-stimulated glucose clearance despite increased lipid content in these tissues. Additionally, there was no difference in skeletal muscle insulin-stimulated glucose disposal, but there was a reduction observed in brown adipose tissue. Overall, these results show that ATGL−/− mice are protected from HFD-induced insulin resistance and reveal a tissue specific disparity between lipid accumulation and insulin sensitivity.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3