Evidence of Adrenal Failure in Aging Dax1-Deficient Mice

Author:

Scheys Joshua O.12,Heaton Joanne H.1,Hammer Gary D.132

Affiliation:

1. Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes (J.O.S., J.H.H., G.D.H.), University of Michigan, Ann Arbor, Michigan 48109-2200

2. Cellular and Molecular Biology Program (J.O.S., G.D.H.), University of Michigan, Ann Arbor, Michigan 48109-2200

3. Department of Molecular and Integrative Physiology (G.D.H.), University of Michigan, Ann Arbor, Michigan 48109-2200

Abstract

Dosage-sensitive sex reversal, adrenal hypoplasia congenita (AHC) critical region on the X chromosome, gene 1 (Dax1) is an orphan nuclear receptor essential for development and function of the mammalian adrenal cortex and gonads. DAX1 was cloned as the gene responsible for X-linked AHC, which is characterized by adrenocortical failure necessitating glucocorticoid replacement. Contrary to these human data, young mice with genetic Dax1 knockout (Dax1−/Y) exhibit adrenocortical hyperfunction, consistent with the historic description of Dax1 as a transcriptional repressor that inhibits steroidogenic factor 1-dependent steroidogenesis. This paradox of molecular function and two apparently opposite phenotypes associated with Dax1 deficiency in mice and humans is compounded by the recent observations that under certain circumstances, Dax1 can serve as a transcriptional activator of steroidogenic factor 1. The recently revealed role of Dax1 in embryonic stem cell pluripotency, together with the observation that its expression in the adult adrenal is restricted to the subcapsular cortex, where presumptive undifferentiated progenitor cells reside, has led us to reexamine the phenotype of Dax1−/Y mice in order to reconcile the conflicting mouse and human data. In this report, we demonstrate that although young Dax1−/Y mice have enhanced steroidogenesis and subcapsular adrenocortical proliferation, as these mice age, they exhibit declining adrenal growth, decreasing adrenal steroidogenic capacity, and a reversal of their initial enhanced hormonal sensitivity. Together with a marked adrenal dysplasia in aging mice, these data reveal that both Dax1−/Y mice and patients with X-linked AHC exhibit adrenal failure that is consistent with adrenocortical subcapsular progenitor cell depletion and argue for a significant role of Dax1 in maintenance of these cells.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference58 articles.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3