Loss-of-Function Mutations in the Human Luteinizing Hormone Receptor Predominantly Cause Intracellular Retention

Author:

Newton Claire Louise123,Anderson Ross Calley134,Katz Arieh Anthony35,Millar Robert Peter136

Affiliation:

1. Centre for Neuroendocrinology (C.L.N., R.C.A., R.P.M.), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa

2. Department of Immunology (C.L.N), Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa

3. UCT/MRC Receptor Biology Research Unit, Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine (C.L.N., R.C.A., A.A.K., R.P.M.), Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa

4. Department of Zoology and Entomology (R.C.A), Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0028, South Africa

5. SAMRC Gynaecology Cancer Research Centre (A.A.K), Department of Integrative Biomedical Sciences and Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7700, South Africa

6. Department of Physiology (R.P.M), Faculty of Health Sciences, University of Pretoria, Pretoria, 0007, South Africa

Abstract

Mutations in G protein–coupled receptors (GPCRs) have been identified for many endocrine hormone signaling deficiencies. Inactivating mutations can impair ligand binding, receptor activation/coupling to signaling pathways, or can cause receptor misfolding and consequent impaired expression at the cell membrane. Here we examine the cell surface expression, ligand binding, and signaling of a range of mutant human luteinizing hormone receptors (LHRs) identified as causing reproductive dysfunction in human patients. The data obtained reveal how mutations in GPCRs can have diverse and severely deleterious effects on receptor function. Furthermore, it was found that impaired functionality of the majority of the mutant LHRs was due to reduced expression at the cell surface (14/20) while only two mutations caused impaired binding affinity and two impaired in signaling. An additional two mutations were found to cause no impairment of receptor function. These data demonstrate that the majority of LHR mutations lead to intracellular retention and highlight the potential for novel pharmacological chaperone therapeutics that can “rescue” expression/function of retained mutant GPCRs.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3