Characterization of Neuropeptide B (NPB), Neuropeptide W (NPW), and Their Receptors in Chickens: Evidence for NPW Being a Novel Inhibitor of Pituitary GH and Prolactin Secretion

Author:

Bu Guixian1,Lin Dongliang1,Cui Lin1,Huang Long1,Lv Can1,Huang Simiao1,Wan Yiping1,Fang Chao1,Li Juan1,Wang Yajun1

Affiliation:

1. Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China

Abstract

The 2 structurally and functionally related peptides, neuropeptide B (NPB) and neuropeptide W (NPW), together with their receptor(s) (NPBWR1/NPBWR2) constitute the NPB/NPW system, which acts mainly on the central nervous system to regulate many physiological processes in mammals. However, little is known about this NPB/NPW system in nonmammalian vertebrates. In this study, the functionality and expression of this NPB/NPW system and its actions on the pituitary were investigated in chickens. The results showed that: 1) chicken NPB/NPW system comprises an NPB peptide of 28 amino acids (cNPB28), an NPW peptide of 23 or 30 amino acids (cNPW23/cNPW30), and their 2 receptors (cNPBWR1 and cNPBWR2), which are highly homologous to their human counterparts. 2) Using a pGL3-CRE-luciferase reporter system, we demonstrated that cNPBWR2 expressed in Chinese hamster ovary cells can be potently activated by cNPW23 (not cNPB28), and its activation inhibits the intracellular cAMP signaling pathway, whereas cNPBWR1 shows no response to peptide treatment, suggesting a crucial role of cNPBWR2 in mediating cNPW/cNPB actions. 3) Quantitative real-time PCR revealed that cNPW and cNPB are widely expressed in chicken tissues, including hypothalamus, whereas cNPBWR1 and cNPBWR2 are mainly expressed in brain or pituitary. 4) In accordance with abundant cNPBWR2 expression in pituitary, cNPW23 could dose dependently inhibit GH and prolactin secretion induced by GHRH and vasoactive intestinal polypeptide, respectively, in cultured chick pituitary cells, as monitored by Western blotting. Collectively, our data reveal a functional NPB/NPW system in birds and offer the first proof that NPW can act directly on pituitary to inhibit GH/prolactin secretion in vertebrates.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3