Severe Brown Fat Lipoatrophy Aggravates Atherosclerotic Process in Male Mice

Author:

Gómez-Hernández Almudena1,Beneit Nuria1,Escribano Óscar1,Díaz-Castroverde Sabela1,García-Gómez Gema1,Fernández Silvia1,Benito Manuel1

Affiliation:

1. Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain

Abstract

Obesity is one of the major risk factors for the development of cardiovascular diseases and is characterized by abnormal accumulation of adipose tissue, including perivascular adipose tissue (PVAT). However, brown adipose tissue (BAT) activation reduces visceral adiposity. To demonstrate that severe brown fat lipoatrophy might accelerate atherosclerotic process, we generated a new mouse model without insulin receptor (IR) in BAT and without apolipoprotein (Apo)E (BAT-specific IR knockout [BATIRKO];ApoE−/− mice) and assessed vascular and metabolic alterations associated to obesity. In addition, we analyzed the contribution of the adipose organ to vascular inflammation. Brown fat lipoatrophy induces visceral adiposity, mainly in gonadal depot (gonadal white adipose tissue [gWAT]), severe glucose intolerance, high postprandial glucose levels, and a severe defect in acute insulin secretion. BATIRKO;ApoE−/− mice showed greater hypertriglyceridemia than the obtained in ApoE−/− and hypercholesterolemia similar to ApoE−/− mice. BATIRKO;ApoE−/− mice, in addition to primary insulin resistance in BAT, also showed a significant decrease in insulin signaling in liver, gWAT, heart, aorta artery, and thoracic PVAT. More importantly, our results suggest that severe brown fat lipoatrophy aggravates the atherosclerotic process, characterized by a significant increase of lipid depots, atherosclerotic coverage, lesion size and complexity, increased macrophage infiltration, and proinflammatory markers expression. Finally, an increase of TNF-α and leptin as well as a decrease of adiponectin by BAT, gWAT, and thoracic PVAT might also be responsible of vascular damage. Our results suggest that severe brown lipoatrophy aggravates atherosclerotic process. Thus, BAT activation might protect against obesity and its associated metabolic alterations.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference43 articles.

1. Global overview of the epidemiology of atherosclerotic cardiovascular disease;Barquera;Arch Med Res,2015

2. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research;Leon;World J Diabetes,2015

3. The new dyslipidemia guidelines: what is the debate?;Anderson;Can J Cardiol,2015

4. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis;Husain;World J Biol Chem,2015

5. Eur Rev Cardiovascular diseases: oxidative damage and antioxidant protection;Zhang;Med Pharmacol Sci,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3