The Circadian Timing System and Environmental Circadian Disruption: From Follicles to Fertility

Author:

Sen Aritro1,Sellix Michael T.1

Affiliation:

1. Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester New York 14642

Abstract

The internal or circadian timing system is deeply integrated in female reproductive physiology. Considerable details of rheostatic timing function in the neuroendocrine control of pituitary hormone secretion, adenohypophyseal hormone gene expression and secretion, gonadal steroid hormone biosynthesis and secretion, ovulation, implantation, and parturition have been reported. The molecular clock, an autonomous feedback loop oscillator of interacting transcriptional regulators, dictates the timing and amplitude of gene expression in each tissue of the female hypothalamic-pituitary-gonadal (HPG) axis. Although multiple targets of the molecular clock have been identified, many associated with critical physiological functions in the HPG axis, the full extent of clock-driven gene expression and physiology in this critical system remains unknown. Environmental circadian disruption (ECD), the disturbance of temporal relationships within and between internal clocks (brain and periphery), and external timing cues (eg, light, nutrients, social cues) due to rotating/night shift work or transmeridian travel have been linked to reproductive dysfunction and subfertility. Moreover, ECD resulting from exposure to endocrine disrupting chemicals, environmental toxins, and/or irregular hormone levels during sexual development can also reduce fertility. Thus, perturbations that disturb clock function at the molecular, cellular or systemic level correlate with significant declines in female reproductive function. Here we briefly review the evidence for molecular clock function in each tissue of the female HPG axis (GnRH neuron, pituitary, uterus, oviduct, and ovary), describe the human epidemiological and animal data supporting the negative effects of ECD on fertility, and explore the potential for novel chronotherapeutics in women's health and fertility.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3