Affiliation:
1. Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin Hospital, Shanghai Jiaotong University Medical School, 200025, Shanghai, P.R. China
Abstract
Menin, encoded by the Men1 gene, is responsible for β-cell tumor formation in patients with multiple endocrine neoplasia type 1. Recently, menin has been proven to negatively regulate β-cell proliferation during pregnancy. However, it is unclear whether menin is involved in pancreatic β-cell proliferation in response to other physiological replication stimuli, such as glucose. In this study, we found that the menin level was significantly reduced in high glucose-treated INS1 cells and primary rat islets, both with increased proliferation. A similar observation was found in islets isolated from rats subjected to 72-h continuous glucose infusion. The glucose-induced proliferation was inhibited by menin overexpression. Further molecular studies showed that glucose-induced menin suppression was blocked by PI3K/Akt pathway inhibitors. A major PI3K/Akt substrate, Foxo1, was shown to enhance menin transcription levels by binding the promoter region of the Men1 gene. Therefore, we conclude that glucose inhibits menin expression via the PI3K/Akt/Foxo1 pathway and hence promotes pancreatic β-cell proliferation. Our study suggests that menin might serve as an important intracellular target of glucose to mediate the mitogenic effect that glucose exerts in pancreatic β-cells.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献